MIT研究人员开发出验证机器人安全性和稳定性的新算法 有助于更安全地部署机器人和自动驾驶汽车
admin
2024年08月09日
阅读数 78061
盖世汽车讯 神经网络对工程师如何设计机器人控制器产生了巨大影响,催生了自适应能力更强、效率更高的机器。不过,这些类似大脑的机器学习系统也是一把双刃剑:其复杂性使其功能强大,但也难以保证由神经网络驱动的机器人能够安全地完成任务。
图片来源于网络,如有侵权,请联系删除
图片来源:MIT CSAIL
验证机器人安全性和稳定性的传统方法是通过称为李雅普诺夫函数(Lyapunov functions)的技术。如果能找到一个李雅普诺夫函数的值持续下降,那么与更高值相关的不安全或不稳定情况永远不会发生。然而,对于由神经网络控制的机器人,此前用于验证李雅普诺夫条件的方法并不能很好地扩展到复杂的机器。
图片来源于网络,如有侵权,请联系删除
据外媒报道,麻省理工学院(MIT)计算机科学与人工智能实验室(CSAIL)及其它机构的研究人员现在开发出新技术,可以在更复杂的系统中严格验证李雅普诺夫计算。该算法可以高效地搜索和验证李雅普诺夫函数,为系统的稳定性提供保证。这种方法可能有助于更安全地部署机器人和自动驾驶汽车,包括飞机和航天器。
版权声明
本文仅代表作者观点,不代表xx立场。
本文系作者授权xx发表,未经许可,不得转载。